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I. INTRODUCTION

An understanding of the dynamical behavior of liquid
crystal directors including defects and transitions bet-
ween topologically inequivalent states has become import-
ant for advanced liquid crystal modes, which can exhi-
bit excellent electro-optical characteristics, such as an
in-plane switch cell, patterned vertically aligned cell,
multi-domain cell and so on. In order to understand
defect dynamics, generally, two and three dimensional
calculations that can include disclination for liquid crystal
cells are important.
Previous papers [1,2] introduced the fast Q-tensor met-

hod which can handle defect dynamics in addition to
normal liquid crystal behavior and topological transition.
Dickman had shown that Oseen-Frank vector repre-
sentation could go directly to the Q-tensor representation
if we use only one 3rd order Q component [3]. However,
Dickman considered only a constant value of order
parameter S, so that the results are only qualitative in
their description of defects. We have successfully shown
that the fast Q-tensor method calculates the order para-
meter by adding the temperature terms in addition to
the Q-tensor representation of Oseen-Frank free energy
terms [1]. Besides, we have derived an improved norm-
alization method for the faster calculations.
Defects in the LC director field sometimes occur due

to surface inhomogeneity in addition to topologically ine-
quivalent transition, because it can derive high elastic

energy around at high changed position. Fig. 1 is a“ ”
cartoon that shows the defect nucleation and defect
lines at a prominence of the surface in the homeotropic
aligned liquid crystal director field [4].
In this paper, we model the defect from surface promi-

nence shown in Fig. 1 using fast Q-tensor representation.
In order to confirm the calculated result, we compared
the numerical modeling of the defect nucleation with
experimental phenomenon. In addition, dynamical beha-
viors of the defect from surface inhomogeneity have
been calculated under applied voltages.

II. NUMERICAL MODELING OF A FAST Q
TENSOR METHOD

The Gibb s free energy density (’ fg) consists of the ela-
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With the fast Q-tensor method, which can model the defect dynamics in a liquid crystal director
field, the nucleation and dynamical behavior of defects is modeled. In order to model the defect,
hormeotropic aligned liquid crystal cell with step inhomogeneous electrode which has a height of
1 m is used. From the simulation, we can observe the nucleation and line of the defect from surfaceμ
inhomogeneity and the experiment is performed for confirmation. The experimental result is com-
pared with numerical modeling in order to verify the simulation of the defect nucleation.
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FIG. 1. Example of the decoration of mechanical inho-
mogeneities at a prominence by a nematic liquid crystal.
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stic energy density term of the LC director (fs) and the
external electric free energy density term (fe). Simply,
we can achieve the total energy by integrating the
calculated Gibb s free energy density. As I mentioned’
above, Dickman successfully derived the Q-tensor form
from the vector form of the Frank-Oseen strain free
energy density as below [5],
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The electric free energy density for the Q-tensor form
is derived directly from fe = D ․ E/2. From this, the
Q-tensor form for the electric free energy density can
be obtained as below [5],
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In order to calculate the order parameter S in each

grid, we need to add a temperature energy term that,

in the absence of director field distortion, determines

S as a function of temperature because the order para-

meter S is related directly to temperature. Basically, we

can formulate the thermal energy density by using a

simple polynomial expansion which is expressed as

follows [6],
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Therefore, the total free energy density is the sum

of equations (1), (2) and (3), so that the Gibb s free’
energy density can be described as the sum of these

three energy densities.

In order to achieve the equilibrium state of the director

configuration at constant electric field, it is typical to

use the Euler-Lagrange equation. The following equations

show the Euler-Lagrange representation for the electric

potential and the director components under the Cart-

esian coordinate system. By solving eq. (4), potential

distribution and LC configurations can be obtained.
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The terms   and    represent the functional

derivatives with respect to the  and voltage V, res-

pectively. By using these equations, we can calculate
the components of the 3 by 3 Q matrix and the voltages
in each grid. Functional derivatives by each energy term
are described as follows [2],
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+temperature term(  ) (5)
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Where, T is the current temperature, Tnj represents
the nematic-isotropic transition temperature, and the
constants from A1 to A4 represent the coefficients for
the polynomial equation. Generally, polynomial coeff-
icients may be dependent on nematic material. The
polynomial coefficients A1 to A4 have been adjusted so
the Tni are around 95 , so that we can see order par℃ -
ameter S and all diagonalzed Q components go to 0 at
Tni from the typical value of room temperature (25 ).℃
As a result, we calculated that the polynomial coeffi-
cients A1, A2, A3 and A4 are 0.79 J/Cm3, 0.784 J/Cm3,
0.61 J/Cm3 and 1.474 J/Cm3, respectively.
The dynamic equation    can provide

the equilibrium state by recalculating the Q-tensor and
voltages in every time step in each grid.  is rotational
viscosity and we ignored bulk viscosity because have
not considered flow effects. To obtain an equilibrium
state, we applied a relaxation method based on dynamic
equation for numerical calculation. As a result, the form-

ulated relation between Q tensor of next time 


and that of current time 
 is as follows,
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The order parameter S is related to Q-tensor in the
equation by S

2
= 2(Q Q)/3 and we can get this sim× -

ultaneously with the Q components.

III. NUMERICAL MODELING FOR THE
DEFECT NUCLEATION AND DYNAMICAL

BEHAVIORS

De Gennes and Prost mentioned that the size of the
defect core might approach molecular dimensions [6], so
that we may encounter a serious problem for observing
the defect core in the LC configuration. In the previous
papers [1,2] we proposed a numerical method to find
the defect core out by reducing the temperature coeffi-
cients A1 to A4. In order to achieve the value of the
coefficients, we can try to fit S as a function of tem-
perature T to experimental data. Here, the coefficients
are adjusted so Tni is at 95 , and so℃ S as to be 0.6
at room temperature. Specifically, the value of A1, A2,
A3 and A4 as 0.79 J/Cm

3
, 0.784 J/Cm

3
, 0.61 J/Cm

3

and 1.474 J/Cm
3
, respectively, were determined.

Otherwise, we need to scale down the cell structure for
calculation. These two approaches obviously allow us
to observe defect generation and dynamic behavior. Fig
. 2 shows precise temperature characteristics of an
order parameter S when we apply a voltage to the cell.
It can be seen that by adjusting the coefficients A1 to
A4 that give the ratio of the coefficients of the tem-
perature terms to the other terms in the free energy
equation, that the effect of a voltage on the phase tran-
sition temperature can be adjusted to meet an experi-
mental result.
Fig. 3 (a) shows the geometry of the vertical aligned

cell to realize the cell structure as shown in Fig. 1. The
liquid crystal material was MLC-6608 of Merck Com-
pany (K11 = 16.7 pN, K22 = 7.3 pN, K33 = 18.1 pN,
∥  ⊥ ). Cell gap to keep LC layer was 5 m,μ

and ZnO layer was used for step surface configuration
in a z-direction. Height of the ZnO layer was 1 m. Fig.μ
3 (b) shows microscopic photograph of the cell with
crossed polarizers. From the figure, we have observed
the light leakage from the edge of the electrode which
implies nucleation of the defect core due to surface
inhomogeneity with step type of the edge.
Fig. 4 (a) shows the cell geometry for simulating the

defect nucleation from surface inhomogeneity. For the
calculation, the number of calculated layers was set to
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FIG. 2. The calculated dependence of the order

parameter S on temperature T. The solid line represents
results when no voltage is applied, the dash-dotted line
and the dotted line represents the calculated results when
we apply the 5 V. For the dotted lines, the values of
A1-A4 have been changed to 0.01 times the values.

(a) (b)

ZnO

light leakage 
ZnO 

ITO

Glass

ZnO

light leakage 
ZnO 

light leakage 
ZnO 

ITO

Glass

ITO

Glass

FIG. 3. An experiment for observing defect nucleation;
(a) cell structure, (b) light leakage under crossed polarizers.
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FIG. 4. The geometry of a vertical alignment LC cell
for calculation; (a) cell structure, (b) LC alignment on
the inhomogeneous surface.
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50 50 in the x and z directions. LC directors on the×
surface have aligned vertically and we assumed that
the LC directors at corner grids of the edge have
average numerical values of the neighbor directors as
shown in Fig. 4 (b).
Fig. 5 shows the calculated result using the fast Q-

tensor method. In the figure, length of the lines is pro-
portional to amplitude of S, so that circled areas in the
figure imply the points of defect nucleation. Without
applied voltage as shown in Fig. 5 (a), defect was nucle-
ated along the z-axis at the step side. This implies that
high strain energy may be stored along the z-axis at
the step side because the LC directors along the surface
in the z-axis meet the LC directors in the bulk area with
perpendicular state in a very short range. Fig. 5 (b),
(c) and (d) show the dynamical behavior of the
generated defects from surface inhomogeneity. It moves
to the bulk area along defect line by applying the ele-
ctric field. However, moving distance of the defects may
be very short (under several m), so that we assumeμ
that the generated defects due to step surface inhomo-
geneity look stuck around the edge of the electrode even
if we apply an electric field.

IV. CONCLUSIONS

Numerical modeling of the liquid crystal defect from
surface inhomogeneity has been presented by using fast
Q-tensor method. We modeled the defect nucleation
near a prominence of the surface in the homeotropic
liquid crystal director field. We confirm that defects
can be generated due to surface inhomogeneity in addi-

tion to topologically inequivalent transition. For better
optical characteristics of the LC cell, various structures
of the LC cell may be applied to LC optical design and
this may cause the unpredictable optical loss because
of generated defects. A Fast Q-tensor method which
provides information of the order parameter S may help
us to understand defect dynamics and to design LC cells
better.
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