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On the basis of a general Rapini and Papoular equation and a unified surface anchoring energy theory,
dependence of the threshold behavior of the liquid crystal director upon the statistical distribution of polyimide
chains is theoretically investigated for a twisted nematic liquid crystal cell. We assumed that the anisotropy
distribution of polyimide chains induced by the rubbing can be dominated by a Gaussian distribution around
the rubbing direction. Our results show that the threshold behavior of a twisted nematic liquid crystal is
affected strongly by the surface distribution of polymer chains.
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The director distribution of liquid crystal(LC) molecules
in the bulk and at the surfaces of the twisted nematic liquid
crystal (TNLC) cell has caused considerable interest in both
basic and applied science. Behavior of the director distribu-
tion is affected by the surface distribution of solid substrate
materials such as polymer chains, as well as by the interfa-
cial anchoring strength between LC molecules and solid sub-
strate, and by external fields such as magnetic and electric
fields. Interactions between the LC molecules and solid sub-
strate determine the orientational order of the LC molecules
in the monolayer that comes across solid substrate. This
monolayer orients in turn with LC molecules in bulk because
of the tendency of intermolecular interaction to align mol-
ecules parallel to each other[1–5].

The solid surface treated by the conventional rubbing
method, which has been widely used to obtain a uniform
director alignment in liquid crystal cells, orients the LC di-
rection,L along the easy axis(rubbing direction). Rubbing
breaks the symmetry by reorienting polyimide(PI) chains
used as solid substrate material. Then the anisotropic distri-
bution of PI chains is responsible for the LC alignment. Sur-
face molecular distribution of PI film treated by rubbing or
photoexposure has been revealed through prominent experi-
ments by several scientists[5–13]. Despite such experimen-
tal results, LC anchoring properties on rubbed surfaces that
were considering surface distribution of PI molecules was
reported by Baharat R. Acharyaet al. [14]. Moreover, reports
on deformation of LC directors in bulk, including surface
distribution of PI chains, are still few.

In models for director deformation[15–19], many authors
assumed that all PI chains in a surface are aligned with the
easy axis because of the difficulty of mathematical analysis
in weak anchoring boundaries. Actually, although the micro-
scopic origin of LC alignment has not yet been perfectly
revealed, according to rubbing strength, these distributions
should be different.

The surface effect has been demonstrated by the Rapini
and Papoular equation[20], a simple expression for the in-
terfacial surface anchoring energy per unit area, which illus-
trates the anisotropic interaction between liquid crystal and

solid substrate. A unified surface anchoring energy has been
proposed by Akiko Sugimuraet al. who studied director de-
formation of a twisted chiral nematic liquid crystal cell
(TCNL) [18].

In this paper, on the basis of a general Rapini and Papou-
lar equation and a unified surface anchoring energy, a thresh-
old field of the LC director depending on Gaussian statistical
distribution of PI chains is researched for TCNL.

For a twisted nematic LC sample, the extended aniso-
tropic energy density of director orientation described by
Sugimura is as follows:

fs = − 1
2AsL ·ud2, s1d

which is a nonlinear combination of the azimuthal and polar
angles, whereA means the anisotropic anchoring strength
determined by the distribution of PI chains, andL and u
express the LC director along a particular orientation and the
distribution of PI chains per unit area, respectively. For PI
chains treated by the rubbing it can be approximated by a
Gaussian distribution centered around the easy axis withQ
=0 andF=0. A0 represents the pure strength of interfacial
interaction between LC molecules and PI chains per unit
area. HereQ andF denote the azimuthal and polar angles of
PI chains with respect to the easy axis(rubbing direction). If
PI surfaces have strong anchoring, i.e., all PI chains are
aligned along the same direction, the width of the PI chain
distributionsQ→0 andsF→0 and the probability distribu-
tion function PsQ ,Fd exists only atQ=Q0 and F=p /2,
where these are units, thenA=A0. If sQ→` and sF→`,
i.e., in the weak anchoring limit, PI chains randomly distrib-
ute, which means isotropic alignment, then anisotropic an-
choring strengthA→0. The total free energy density in the
bulk defined by Frank and Oseen is given by the following
expression:

fb =
1

2
Fk1sLi,id2 + k2SLiLk,j«i jk +

2p

p
D2

+ k3LiLjLk,iLk,jG + fe,

s2d

wherek represents the elastic constants;k1, k2 andk3 are the
splay, twist, and bend elastic constants, respectively;p is the
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pitch of LC material by a chiral dopant; and«i jk is the Levi-
Civita symbol ( «123=«231=«312=1,«132=«213=«321=−1, all
other«i jk =0). fe. The electric free energy density which rep-
resents interaction energy between the LC molecule and an
electric field is given byfe=−1

2«0D«sE·Ld2, where«o is the
dielectric constant in the space andD« is the dielectric an-
isotropy.

A director configuration at which total free energy is mini-
mized can maintain the stable state. The total free energy,
which is the sum of the bulk and the surface free energy, can
be expressed as the following integral form:

F =E f s
bda+E f s

tda+E fbdv, s3d

where da is the surface area element anddv is the bulk
volume element. Here, the variational approach using the
unit step function and the Dirac function proposed by Akiko
Sugimuraet al. to solve Eq.(3), which induces more com-
plicated equilibrium condition forms under a weak boundary,
can make Eq.(3) reduce to the unified integral. As a result,
more simple equilibrium conditions were obtained as the fol-
lowings [18]:

] fb

] Li
−

]

] kj
F ] fb

] Li,j
G = qLis0 ø zø ddsk1 = x,k2 = y,k3 = zd,

] fb

] Li,3
= − AbsLb ·ubdui

b − abLi
bsz= 0d,

] fb

] Li,3
= AtsLt ·utdui

t + aiLi
tsz= dd, s4d

where Ab, Lb, and ub represent the anisotropic anchoring
strength, the direction of LC director, and the distribution of
PI chains per unit area at the bottom substrate surfaces, re-
spectively.At, Lt, andut represent the anisotropic anchoring
strength, the direction of LC director, and the distribution of
PI chains per unit area at the top substrate surfaces, respec-
tively, andq, ab, andat are Lagrange multipliers to be de-
termined by the constraintL ·L in the bulk and at the sur-
faces andLij =]Li /]kj. The distribution of PI chains per unit
area atz=0 could be given by

usQ,Fd = „Usc,cd,Usc,sd,Uss,d…, s5d

where

Usc,cd =E
−p/2

p/2 E
0

p

3
ef−sQ − Qod2/2sQ

2 −sFd2/2sf
2 gsin Q

E
−p/2

p/2 E
0

p

ef−sQ − Qod2/2sQ
2 −sFd2/2sf

2 gsin Q dQ dF

3cosQ cosF dQ dF,

Usc,sd =E
−p/2

p/2 E
0

p

3
ef−sQ − Qod2/2sQ

2 −sFd2/2sf
2 gsin Q

E
−p/2

p/2 E
0

p

ef−sQ − Qod2/2sQ
2 −sFd2/2sf

2 gsin Q dQ dF

3cosQ sin F dQ dF,

=E
−p/2

p/2 E
0

p

3
ef−sQ − Qod2/2sQ

2 −sFd2/2sf
2 gsin Q

E
−p/2

p/2 E
0

p

ef−sQ − Qod2/2sQ
2 −sFd2/2sf

2 gsin Q dQ dF

3sin Q dQ dF.

The direction of LC molecules in thez axis can be described
as

Lsu,fd = scosu cosf,cosu sin f,sin ud. s6d

When the polar and the azimuthal deviations of LC direc-
tors with respect to thez layer is only considered and an
electric field is applied to the cell parallel to thez axis, then
the free energy density in the bulk formulated in Eq.(2) is
reduced to

fb =
1

2
Fk1L3,3

2 + k2SL2L1,3− L1L2,3+
2p

P
D2

+ k3sL1L3L1,3L1,1

+ L1L3L2,3L2,1+ L1L3L3,3L3,1+ L2L3L1,3L1,2

+ L2L3L2,3L2,2+ L2L3L3,3L3,2+ L3L3L1,3L1,3

+ L3L3L2,3L2,3+ L3L3L3,3L3,3dG + fe

=
1

2
Fk1L3,3

2 + k2SL2L1,3− L1L2,3+
2p

P
D2

+ k3sL3L3L1,3L1,3

+ L3L3L2,3L2,3+ L3L3L3,3L3,3dG −
1

2
«0D«sE ·Ld2. s7d

In order to conduct the torque balance equation, which
means minimization of the free energy and the stable director
state in the bulk, variational calculus is applied to Eq.(7).
From it, the torque balance equation in the bulk is given by

sk1cos2u + k3sin2udSdu

dz
D2

+ F 1

sk2cos2u + k3sin2udcos2u

3SB +
2pk2

p
cos2uDG2

− D«E2sin u cosu = I , s8d

whereB andI are integration constants. Here the polar angle
u and azimuthal anglef are the functions ofz. We now find
B using the boundary condition at the surface. Using Eqs.(5)
and (6), the third equation of Eq.(4) is given as follows:
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] fb

] Li,3
= − AbsLb ·ubdui

b − lbLi
bsz= 0d

=5
] fb

] L1,3
= − AfUsc,cdcosu cosf + Usc,sdcosu sin f + Uss,dsin ugUsc,cd − lbcosu cosf,

] fb

] L2,3
= − AfUsc,cdcosu cosf + Usc,sdcosu sin f + Uss,dsin ugUsc,sd − lbcosu sin f,

] fb

] 31,3
= − AfUsc,cdcosu cosf + Usc,sdcosu sin f + Uss,dsin ugUss,d − lbsin u.

s9d

Using Eqs.(2) and (6), ]fb/]Li,3 can be expressed in the following forms:

] fb

] L1,3
=5

] fb

] L1,3
= − k3sin3 u cosf

] u

] z
− sk2cos2 u + k3sin2 udcosu sin f

] f

] z
+ k22cosu sin f,

] fb

] L2,3
= k3sin3 u sin f

] u

] z
+ sk2cos2 u + k3sin2 udcosu cosf

] f

] z
+ k22cosf cosf,

] fb

] L3,3
= sk1 + k3sin2 udcosu

] u

] z
,

s10d

wherek22=2pk2/p. From Eqs.(9) and (10), the torque balance equations at the surface,z=0, can be expressed as follows:

sk1cos2 u + k3sin2 udUdu

dz
U

z=0
= AfUsc,sdsin f + Usc,cdcosfgfUsc,cdcosf + Usc,sdsin fgsin u cosu + AUss,d

3scos2u − sin2 udfUsc,sdsin f − Usc,cdcosfg + AU2ss,dsin u cosu, s11d

sk2cos2 u + k3sin2 udcos2 uUdf

dz
U

z=0
= AfUsc,cdcosu cosf + Usc,sdcosu sin f + Uss,dsin ugfUsc,cdsin f

− Usc,sdcosfgcosu +
2pk2

p
cos2 u. s12d

From Eq.(12) and the boundary condition at the surface,B is
found as follows;

B = AfUsc,cdcosuocosfo + Usc,sdcosuosin fo

+ Uss,dsin uogfUsc,cdsin fo − Usc,sdcosfogcosu.

Also, from midplane condition defined as

Udu

dz
U

z=d/2
= 0, u = uumuz=d/2, f = U1

2
ftU

z=d/2
, s13d

I is solved simply as follows:

I = F 1

sk2cos2 um + k3sin2 umd
SB +

2pk2

p
cos2umD2

+ «oD«E2sin2umG .

Then, from Eq.(8), we can obtain

du

dz
= H 1

sk1cos2 u + k3sin2 udF 1

sk2cos2 um + k3sin2 umdcos2 um

3SB +
2pk2

p
cos2 umD2

−
1

sk2cos2 u + k3sin2 udcos2 u

3SB +
2pk2

P
cos2 uD2

+ D«E2ssin2 um − sin2 udGJ1/2

.

s14d

We assume thatuo=um→0 at the threshold condition. Then,
B is reduced as

B = AfUsc,cdcosf0 + Usc,sdsin f0g

3fUsc,cdsin f0 − Usc,sdcosf0g. s15d

Here u0 and f0 are polar and azimuthal angles of LC atz
=0 or z=d with respect to easy axis, respectively. From Eqs.
(13)–(15), this very important equation, related between the
azimuthal anchoring strength and the azimuthal deviation
angle of the surface LC directors concerning the distribution
of polymer chains, is defined as
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sAd/k2d = fUsc,cdcosf0 + Usc,sdsin f0gfUsc,cdsin f0

− Usc,sdcosf0g

= ft − 2f0 − s2pd/pd. s16d

For simplicity of calculation, we suppose that PI molecules
at the surface have only azimuthal distribution. Applying Eq.
(14) to Eq. (11) and using Eqs.(13) and (16) at threshold
condition leads to the relationship between the threshold
field and anchoring strength as the follows:

s1/ldU2s,cdcos2f0 = s1/apdÎq tans 1
2
Îqd , s17d

where a=k2/k1, b=k3/k1, and the dimensionless coupling
parameter

l = spk2/Add,

q = D«Et
2d2

k1
+ s2a − bdsft − 2f0d2 − 4pacsft − 2f0d, s18d

wherec=d/p. For convenience, we use the reduced voltage,
v=Vt /Vth, whereVth is the Fréedericksz threshold votage for
ft=0, defined as

Vth = pÎk1/D«. s19d

From Eqs.(18) and (19), the general reduced voltagev is
given by

v =
1

p
Îq − s2a − bdsft − 2f0d2 + 4pacsft − 2f0d. s20d

From Eqs.(17) and(20), we look into the distribution width
sf dependence with thel dependence of the threshold volt-
age for twisted cells and untwisted cells(ft=p /2 and ft
=0 with sf=0, 0.8 and 1.2 fora=k2/k1=0.6, b=k3/k1, and
c=d/p=0) as shown in Fig. 1. As depicted in Fig. 1, in the
strong anchoring ofl→0, our results agree well with the
results of previous studies. For an isotropic surface ofl
→` andsf→`, our model shows more reasonable results
because the threshold voltage approaches zero voltage,
which means that the Fréedericksz transition does not exist.
The most important difference between our model and Beck-
er’s model[17] is the existence of threshold voltage inver-
sion between the twisted state and the untwisted state in

weak anchoring. The existence of threshold voltage inversion
between the twisted state and the untwisted state was not
noted in Becker’s model, but it was noted in our model. This
could mean that under the surface with weak anchoring the
threshold voltage is principally affected by the interaction of
LC molecules in bulk, namely, under weak anchoring, free
energy of the twisted state which has worse ordering is
higher than that of the untwisted state which has better or-
dering. In addition, an increase of the distribution widthsf

leads to threshold voltage inversion under stronger anchoring
and decreases threshold voltage in both the twisted state and
untwisted state. This obviously shows that the configuration
and the threshold behavior of directors in bulk is affected by
distribution of surface polymer chains.

In this paper, we assumed that anchoring strengths are the
same asA=At=Ab and pretilt angles at both surfaces are the
same asu0=us0d=usdd.
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FIG. 1. When the widths of distribution are 0, 0.8, and 1.2 for
the twisted state ofp /2 and the untwisted state, the dimensionless
coupling parameterl and the width of the distributionssf depen-
dence on the threshold voltage is shown with Becker’s model for
comparison. The ratios of the elastic constantsa andb are 0.6 and
1.5, respectively. Here, the pitch of LC materialp is infinite.
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